116TH CONGRESS 1st Session

To require the Secretary of Energy to establish an integrated energy systems research, development, and demonstration program, and for other purposes.

IN THE SENATE OF THE UNITED STATES

Mr. RISCH (for himself and Mr. MANCHIN) introduced the following bill; which was read twice and referred to the Committee on

A BILL

- To require the Secretary of Energy to establish an integrated energy systems research, development, and demonstration program, and for other purposes.
 - 1 Be it enacted by the Senate and House of Representa-
 - 2 tives of the United States of America in Congress assembled,

3 **SECTION 1. SHORT TITLE.**

- 4 This Act may be cited as the "Integrated Energy Sys-
- 5 tems Act of 2019".

6 SEC. 2. INTEGRATED ENERGY SYSTEMS PROGRAM.

- 7 (a) DEFINITIONS.—In this section:
- (1) PROGRAM.—The term "program" means 8 9 the Integrated Energy Systems Program established 10
 - under subsection (b)(1).

1	(2) Secretary.—The term "Secretary" means
2	the Secretary of Energy.
3	(b) Establishment.—
4	(1) IN GENERAL.—The Secretary shall establish
5	a program within the Office of Nuclear Energy, to
6	be known as the "Integrated Energy Systems Pro-
7	gram''—
8	(A) to maximize energy production and ef-
9	ficiency;
10	(B) to provide reliable, competitive, and
11	environmentally sustainable electricity to the
12	grid;
13	(C) to expand the use of emissions-reduc-
14	ing energy technologies into nonelectric sectors
15	to achieve dramatic reductions in environmental
16	emissions; and
17	(D) to enable the energy infrastructure of
18	the United States to support the quantity, vari-
19	ability in type, and variability in size of genera-
20	tion devices and smart load devices.
21	(2) Program administration; partners.—
22	The program shall be carried out by the Office of
23	Nuclear Energy, in partnership with—
24	(A) multiple offices of the Department of
25	Energy, including—

PAT19925

1	(i) the Office of Energy Efficiency
2	and Renewable Energy;
3	(ii) the Office of Fossil Energy;
4	(iii) the Office of Electricity; and
5	(iv) the Office of Cybersecurity, En-
6	ergy Security, and Emergency Response;
7	(B) National Laboratories;
8	(C) institutions of higher education; and
9	(D) the private sector.
10	(3) GOALS AND MILESTONES.—The Secretary
11	shall establish goals and milestones for the program,
12	including the goals of—
13	(A) expanding emissions-reducing energy
14	technologies to the transportation and indus-
15	trial sectors by leveraging—
16	(i) the nuclear reactor fleet of the
17	United States;
18	(ii) advanced nuclear;
19	(iii) renewable energy;
20	(iv) carbon capture, use, and storage;
21	and
22	(v) the energy storage resources of the
23	United States;

1	(B) ensuring the competitiveness of the
2	United States in best value, emissions-reducing
3	energy development;
4	(C) modernizing energy infrastructure with
5	emissions-reducing technology to promote—
6	(i) grid stability;
7	(ii) ramping load following;
8	(iii) rapid start;
9	(iv) intermittency; and
10	(v) resiliency;
11	(D) establishing a domestic supply chain
12	of—
13	(i) nuclear reactor and appurtenant
14	equipment; and
15	(ii) advanced coolants;
16	(E) enhancing and accelerating domestic
17	manufacturing and desalinization technologies
18	and processes by optimally using clean energy
19	sources; and
20	(F) mitigating vulnerability to—
21	(i) transmission congestion on the
22	power grid;
23	(ii) cyberattack;
24	(iii) physical attack; and
25	(iv) natural phenomena.

1	(c) RESEARCH GOALS.—Research goals under the
2	program shall include—
3	(1) technology innovation to further the expan-
4	sion of emissions-reducing energy technologies to ac-
5	commodate a modern, resilient grid system by—
6	(A) effectively leveraging multiple energy
7	sources;
8	(B) enhancing and streamlining engineer-
9	ing design;
10	(C) carrying out process demonstrations to
11	optimize performance;
12	(D) addressing safety by design; and
13	(E) streamlining regulatory review;
14	(2) the most efficient use of emissions-reducing
15	energy technologies for hydrogen production to sup-
16	port transportation and industrial needs;
17	(3) water processing and purification to support
18	industrial and municipal potable and cooling water
19	needs;
20	(4) conversion of carbon feedstock (such as
21	coal, biomass, natural gas, and refuse waste) to
22	higher value nonelectric commodities;
23	(5) the use of carbon dioxide in nonelectric
24	commodities;

1	(6) advanced power cycles, extraction, and proc-
2	essing of complex hydrocarbons to produce high-
3	value chemicals;
4	(7) more effective thermal energy use, trans-
5	port, and storage;
6	(8) the demonstration of nuclear energy deliv-
7	ery for—
8	(A) the production of chemicals, metals,
9	and fuels;
10	(B) the capture, use, and storage of car-
11	bon; and
12	(C) renewable integration with an inte-
13	grated energy system; and
14	(9) the development of new analysis capabilities
15	to identify the best ways—
16	(A) to leverage multiple energy sources in
17	a given region; and
18	(B) to quantify the benefits of integrated
19	energy systems.
20	(d) GRANTS.—The Secretary may award grants
21	under the program to support the goals of the program.
22	(e) Authorization of Appropriations.—There is
23	authorized to be appropriated to the Secretary to carry
24	out the program \$50,000,000 for each of fiscal years 2020
25	through 2029.